Semester ExamErgodic TheoryTime: 3hrsTotal Marks: 50Answer any five and each question is worth 10 MarksTotal Marks 50

- 1. Let $T: X \to X$ be a measure preserving transformation of the probability space (X, \mathcal{B}, m) . Prove that T is ergodic on X if and only if for any $B \in \mathcal{B}$ with $m(T^{-1}B \triangle B) = 0$, we have m(B) = 0 or 1 if and only if for any $f \in L^2(X)$, f(T(x)) = f(x) a.e., we have f is constant a.e.
- 2. (a) Define one-sided $(p_0, p_1, \dots, p_{k-1})$ -shift and prove that it is measure preserving but not invertible and is ergodic.

(b) Let $T: X \to X$ be a measure-preserving transformation of a probability space (X, \mathcal{B}, m) . Show that T is strong mixing if and only if $T \times T$ is strong mixing.

- 3. Let $T: X \to X$ be a measure-preserving transformation of a probability space (X, \mathcal{B}, m) and $A \subset X$ be a set of positive measure. Define $T_A: A \to A$ by $T_A(x) = T^{n_A(x)}(x)$ for a.e. $x \in A$ where $n_A(x)$ is the least positive integer such that $T^{n_A(x)}(x) \in A$. Prove that T_A is a measure preserving transformation on (A, m_A) with $m_A(E) = \frac{m(E)}{m(A)}$ for any measurable set E in A and if T is ergodic show that T_A is ergodic.
- 4. Let (X, \mathcal{B}, m) be a probability space. Let \mathcal{A}, \mathcal{C} and \mathcal{D} be finite sub σ -algebras. Then prove that
 - (a) $H(\mathcal{A} \bigvee \mathcal{C}/\mathcal{D}) = H(\mathcal{A}/\mathcal{D}) + H(\mathcal{C}/\mathcal{A} \bigvee \mathcal{D})$ and
 - (b) $\mathcal{C} \subset \mathcal{D}$ implies $H(\mathcal{A}/\mathcal{C}) \geq H(\mathcal{A}/\mathcal{D})$.
- 5. Let (X, \mathcal{B}, m) be a probability space. Let \mathcal{A} and \mathcal{C} be a finite sub σ -algebras of \mathcal{B} . Prove that
 - (a) $H(\mathcal{A}/\mathcal{C}) = 0$ if and only if $\mathcal{A} \subset^0 \mathcal{C}$;
 - (b) $H(\mathcal{A}/\mathcal{C}) = H(\mathcal{A})$ if and only if \mathcal{A} and \mathcal{C} are independent.
- 6. (a) If T_1 and T_2 are measure preserving systems such that T_2 is a factor of T_1 , then show that $h(T_2) \leq h(T_1)$.

(b) Prove that entropy of a measure preserving transformation is conjugacy invariant

7. (a) Prove that measure preserving transformation of a finite space has zero entropy.

(b) Prove that the two-sided (p, P) Markov shift has entropy $-\sum_{i,j} p_i p_{ij} \log p_{ij}$.